European space concepts enter competition

From the BBC: the European Space Agency has selected four new mission concepts to compete for a launch opportunity at the start of the 2020s.

  • Large Observatory For X-ray Timing (LOFT): The mission would go after the fast-moving, high-energy environments that surround black holes, neutron stars and pulsars – objects that can produce sudden and very rapid bursts of X-rays. By observing this emission, scientists would hope to address questions related to fundamental physics: they could probe the effects of matter entering ultra-strong gravitational fields and ultra-dense states. They could also measure more accurately the mass and spin of black holes; and in the case of the biggest such objects in the Universe, this has something interesting to say about how they, and the galaxies that host them, formed.
  • Space-Time Explorer and Quantum Equivalence Principle Space Test (STE-Quest): Again, this mission would address some big physics topics. One objective would be to test “the equivalence principle”, which underpins several fundamental assumptions including the idea that gravity will accelerate all objects in a vacuum equally regardless of their masses or the materials from which they are made. The Apollo 15 astronaut Dave Scott famously demonstrated this principle when he dropped a hammer and feather on the Moon in 1971 and both hit the surface at the same time. STE-Quest would put very sensitive instrumentation on an orbiting to do a far more precise test of whether gravity really is so blind or perhaps varies on some scales.
  • MarcoPolo-R: This is an idea that has been around for a while. The mission would attempt to return a sample of material from an asteroid for detailed analysis in Earth laboratories. The most primitive asteroids contain geochemistry not observable in Earth rocks because they are constantly recycled. As such, asteroids can tell scientists a lot about conditions in the early Solar System, and about the original “stuff” that went into making the planets billions of years ago. One potential target is actually two asteroids in close proximity – a binary known as (175706) 1996FG3. The larger rock is about 1.5km across; its companion is less than half a km in diameter.
  • Exoplanet Characterisation Observatory (ECHO): This is a 1.2m telescope that would study planets circling far-away stars. In recent years, hundreds of these so-called exoplanets have been detected, but we no precious little about them yet. Echo would observe the planets as they moved in front of their stars. From the way the light is attenuated, the telescope’s detectors would be able to probe the atmospheres of these worlds. Echo would look for the presence of molecules such as ozone and carbon dioxide in the atmospheres. These and other markers might tell us something about whether any of the exoplanets have conditions capable of supporting life.

ESA establishes first UK research centre

From the Guardian:

The European Space Agency has opened its first research centre in the UK in a move designed to bring more British scientists and engineers into contact with the space industry. The agency has earmarked £1.3m for the facility’s first year of operation.

Work at the centre, which is based in a former computing lab built in the 1960s at Harwell science park in Oxfordshire, will focus on climate change science and robotic missions. Other plans include a “planetary protection facility” that will develop procedures to ensure missions to other planets do not contaminate them with terrestrial chemicals or bugs.

The centre will also operate as a storage facility for moon rock, meteorites and other material brought back from space that needs to be kept under clean-room conditions to protect it from the environment.

Herschel and Planck: the ESA looks for the early years of the Universe

Just over 3 hours from the time I write this, the European Space Agency will launch two satellites. Both will study the early stages of the universe. Watch itlive at this link, or follow them on Twitter.

What will they do?

  • Herschel will carry an infrared telescope. That means it won’t capture visual-spectrum images like Hubble has. What it will catch, in frequencies and detail never before achieved, is information about early star and planet formation. Because its sensitivity is so high, and because radiated heat is infrared, the satellite has an elaborate cryogenic system to keep it super-cool.
  • Planck won’t take visual images either: it’ll measure, in great detail, the Cosmic Microwave Background radiation (that is, the radiation left over from just after the Big Bang).

Each will do lots of other things, too. Read the links.

Ariane 5 enclosing Herschel and Planck